Systematic phosphorylation analysis of human mitotic protein complexes.

نویسندگان

  • Björn Hegemann
  • James R A Hutchins
  • Otto Hudecz
  • Maria Novatchkova
  • Jonathan Rameseder
  • Martina M Sykora
  • Sihan Liu
  • Michael Mazanek
  • Péter Lénárt
  • Jean-Karim Hériché
  • Ina Poser
  • Norbert Kraut
  • Anthony A Hyman
  • Michael B Yaffe
  • Karl Mechtler
  • Jan-Michael Peters
چکیده

Progression through mitosis depends on a large number of protein complexes that regulate the major structural and physiological changes necessary for faithful chromosome segregation. Most, if not all, of the mitotic processes are regulated by a set of mitotic protein kinases that control protein activity by phosphorylation. Although many mitotic phosphorylation events have been identified in proteome-scale mass spectrometry studies, information on how these phosphorylation sites are distributed within mitotic protein complexes and which kinases generate these phosphorylation sites is largely lacking. We used systematic protein-affinity purification combined with mass spectrometry to identify 1818 phosphorylation sites in more than 100 mitotic protein complexes. In many complexes, the phosphorylation sites were concentrated on a few subunits, suggesting that these subunits serve as "switchboards" to relay the kinase-regulatory signals within the complexes. Consequent bioinformatic analyses identified potential kinase-substrate relationships for most of these sites. In a subsequent in-depth analysis of key mitotic regulatory complexes with the Aurora kinase B (AURKB) inhibitor Hesperadin and a new Polo-like kinase (PLK1) inhibitor, BI 4834, we determined the kinase dependency for 172 phosphorylation sites on 41 proteins. Combination of the results of the cellular studies with Scansite motif prediction enabled us to identify 14 sites on six proteins as direct candidate substrates of AURKB or PLK1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus.

The chromosomal passenger complex (CPC) is a crucial regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, using liquid chromatography coupled to mass spectrometry (LC-MS), we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation-specific antibody that labels the CPC. A mitotic phosphorylation motif {PX[G/T/S][L/M]S(P) P or WGLS(P) P...

متن کامل

Isolation of Human Mitotic Protein Phosphatase Complexes: Identification of a Complex between Protein Phosphatase 1 and the RNA Helicase Ddx21

Metazoan mitosis requires remodelling of sub-cellular structures to ensure proper division of cellular and genetic material. Faults often lead to genomic instability, cell cycle arrests and disease onset. These key structural changes are under tight spatial-temporal and post-translational control, with crucial roles for reversible protein phosphorylation. The phosphoprotein phosphatases PP1 and...

متن کامل

Phosphorylation of Crm1 by CDK1-cyclin-B promotes Ran-dependent mitotic spindle assembly.

Mitotic spindle assembly in animal cells is orchestrated by a chromosome-dependent pathway that directs microtubule stabilization. RanGTP generated at chromosomes releases spindle assembly factors from inhibitory complexes with importins, the nuclear transport factors that facilitate protein import into the nucleus during interphase. In addition, the nuclear export factor Crm1 has been proposed...

متن کامل

Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation.

We have used a reconstituted cell-free transcription system to investigate the molecular basis of mitotic repression of RNA polymerase I (pol I) transcription. We demonstrate that SL1, the TBP-containing promoter-binding factor, is inactivated by cdc2/cyclin B-directed phosphorylation, and reactivated by dephosphorylation. Transcriptional inactivation in vitro is accompanied by phosphorylation ...

متن کامل

Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of Key Interconnecting Nucleoporins

During interphase, the nuclear envelope (NE) serves as a selective barrier between cytosol and nucleoplasm. When vertebrate cells enter mitosis, the NE is dismantled in the process of nuclear envelope breakdown (NEBD). Disassembly of nuclear pore complexes (NPCs) is a key aspect of NEBD, required for NE permeabilization and formation of a cytoplasmic mitotic spindle. Here, we show that both CDK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science signaling

دوره 4 198  شماره 

صفحات  -

تاریخ انتشار 2011